Comparative analysis of amino acid sequences from mesophiles and thermophiles in respective of carbon–nitrogen hydrolase family
نویسندگان
چکیده
A comparative study of amino acid sequence and physicochemical properties indicates the affiliation of protein from the nitrilase/cyanide hydratase family. This family contains nitrilases that break carbon-nitrogen bonds and appear to be involved in the reduction of organic nitrogen compounds and ammonia production. They all have distinct substrate specificity and include nitrilase, cyanide hydratases, aliphatic amidases, beta-alanine synthase, and a few other proteins with unknown molecular function. These sequences were analyzed for different physical and chemical properties and to relate these observed differences to the thermostability properties, phylogenetic tree construction and the evolutionary relationship among them. In this work, in silico analysis of amino acid sequences of mesophilic (15) and thermophilic (archaea, 15 and bacteria, 15) proteins has been done. The physiochemical properties of these three groups of nitrilase/cyanide hydratase family also differ in number of amino acids, molecular weight, pI values, positively charged ions, i.e. Arg + Lys, aliphatic index and grand average of hydropathacity (GRAVY). The amino acid Ala (1.37-fold) was found to be higher in mesophilic bacteria as compared to thermophilic bacteria but Lys and Phe were found to be significantly high (1.43 and 1.39-fold, respectively) in case of thermophilic bacteria. The amino acids Ala, Cys, Gln, His and Thr were found to be significantly higher (1.41, 1.6, 1.77, 1.44 and 1.29-fold, respectively) in mesophilic bacteria as compared to thermophilic archaea, where Glu, Leu and Val were found significantly high (1.22, 1.19 and 1.26-fold, respectively).
منابع مشابه
Patterns of temperature adaptation in proteins from Methanococcus and Bacillus.
It has long been known that amino acid substitutions in proteins of organisms living at moderate and high temperatures (mesophiles and thermophiles, respectively) are not all symmetrical; for example, more aligned sites have lysine in mesophiles and arginine in thermophiles than have the opposite pattern. This is generally taken to indicate that certain amino acids are favored over others by se...
متن کاملAmino acid coupling patterns in thermophilic proteins.
Structural analysis is useful in elucidating structural features responsible for enhanced thermal stability of proteins. However, due to the rapid increase of sequenced genomic data, there are far more protein sequences than the corresponding three-dimensional (3D) structures. The usual sequence-based amino acid composition analysis provides useful but simplified clues about the amino acid type...
متن کاملComparative analysis to identify determinants of changing life style in Thermosynechococcus elongatus BP-1, a thermophilic cyanobacterium.
A comparative genomics analysis among all forty whole genome sequences available for cyanobacteria (3 thermophiles- Thermosynechococcus elongatus BP-1, Synechococcus sp. JA-2-3B'a (2-13), Synechococcus sp. JA-3-3Ab and 37 mesophiles) was performed to identify genomic and proteomic factors responsible for the behaviour of T. elongatus BP-1, a thermophilic unicellular cyanobacterium with optimum ...
متن کاملComparison of evolutionary characteristics of orthologous sets from halophiles, thermophiles and mesophiles
Molecular evolution is the change of amino acid composition at locus specific positions of proteins for maintaining structural and functional integrity over long periods of time. In orthologous protein sets, adapted in different environmental conditions such as normal, high temperature and high ionic condition might have different or identical evolutionary characters. To understand the basis of...
متن کاملA comparative study of ribosomal proteins: linkage between amino acid distribution and ribosomal assembly
BACKGROUND Assembly of the ribosome from its protein and RNA constituents must occur quickly and efficiently in order to synthesize the proteins necessary for all cellular activity. Since the early 1960's, certain characteristics of possible assembly pathways have been elucidated, yet the mechanisms that govern the precise recognition events remain unclear.We utilize a comparative analysis to i...
متن کامل